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Abstract
In recent decades, the unprecedented rate of Arctic warming has accelerated the high-latitude
landmass hydrological cycle, leading to increased river discharge into the Arctic Ocean. This study
elucidates the role of Arctic river discharge, which was the large model uncertainty in the Coupled
Model Intercomparison Project 6, for the phytoplankton responses in present-day and future
climate simulations by adding fresh water into the model. In the present-day climate simulation,
additional river discharge decreases the spring phytoplankton biomass. Freshening of Arctic
seawater facilitates freezing, increasing sea ice concentration in spring and eventually decreasing
phytoplankton due to less availability of light. On the other hand, in the summer, phytoplankton
increases due to the surplus of surface nitrate and the increase in the vertical mixing induced by the
reduced summer sea ice melting water. In the future climate, the plankton response to the
additional freshwater input is similar to the present-day climate. Nevertheless, the major
phytoplankton responses are shifted from the Eurasian Basin to the Canada Basin and the
East-Siberian Sea, mainly due to the marginal sea ice zone shift from the Barents-Kara Sea to the
East Siberian-Chukchi Sea in the future.

1. Introduction

The Arctic has been warming at least four times
faster than the global mean temperature since 1979
(Rantanen et al 2022), and this phenomenon is often
called the Arctic amplification (AA). In association
with the AA, the Arctic climate environment is rap-
idly changing in both atmosphere and ocean, such
as atmosphere moistening (Min et al 2008), ecosys-
tem environment changes (Ardyna and Arrigo 2020),
marine acidification (Terhaar et al 2020), and atlan-
tification (Polyakov et al 2017). The AA is also sug-
gested to drive changes in the atmospheric circulation

patterns in the midlatitude high-populated regions
(Cohen et al 2014, Kim et al 2014, Kug et al 2015,
Coumou et al 2018). Since future AA is projected
to become stronger under future climate scenarios
of Coupled Model Intercomparison Projects 5 and
6 (CMIP5, CMIP6), understanding the Arctic envir-
onment and ecosystem changes due to the current
and future accelerating warming remains uncertain
(Smith et al 2019, Hu et al 2021).

Recent studies suggested that the interactive feed-
back further enhances the AA with marine phyto-
plankton biomass (Park et al 2015, Lim et al 2019a,
2019b) and by the human-induced nitrogen fluxes
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from river discharge and atmospheric depositions to
the Arctic in the future climate (Lim et al 2021).
The reduction of sea ice extent and thickness allows
more penetrations of shortwave radiation into the
Arctic Ocean surface (Perovich et al 2007, Nicolaus
et al 2012, Arrigo et al 2014) that triggers the earlier
blooming in marine phytoplankton at the edge of sea
ice (Frey et al 2015) and sub-ice bloom (Arrigo et al
2012, 2014, Horvat et al 2017). The increased phyto-
plankton biomass redistributes heat in ocean lay-
ers, modulating attenuation coefficients (Morel 1988,
Manizza and Le Que 2005) that lead to the simu-
lated AA (Park et al 2015, Lim et al 2019a, 2019b,
2021). This new mechanism to understand the pos-
sible positive feedback highlights the role of the Arc-
tic ecosystem in air-sea-biogeochemical interactions,
which have been overlooked in future Arctic projec-
tions using earth system models (ESMs).

Lewis et al (2020) showed that the primary pro-
ductivity of the Arctic Ocean increased by 30% from
1998 to 2012, owing to the expansion of open water.
Since then, primary productivity has generally exhib-
ited an increasing trend because of increased phyto-
plankton biomass. The future Arctic primary pro-
ductivity in CMIP5 is subject to large uncertainty due
to the subtle balance between sea ice loss (increas-
ing the primary productivity) and stratification-
induced nutrient depletion (decreasing the primary
productivity) (Vancoppenolle et al 2013). However,
Ardyna et al (2017) suggested that the shelf-break,
serving as a ‘green belt,’ can effectively supply inor-
ganic and organic materials to increase marine pro-
ductivity in the stratified Arctic Ocean.

Arctic warming impacts various hydrologic
cycles, such as sea ice melting, intensified precipit-
ation (Min et al 2008), melting of land-based glaciers
(Hugonnet et al 2021), and increased river discharge
(Haine et al 2015). The increased freshwater enter-
ing the Arctic Ocean increases ocean stratification.
Although the Arctic Ocean accounts for 1% of the
global ocean volume, it receives more than 10% of
the global river discharge (McClelland et al 2012).
Long-term river discharge has been steadily increas-
ing, particularly in 2020, with the total annual dis-
charges of the eight largest Arctic rivers at 2623 km3

12% greater than the 1981–2010 discharge average
(Peterson et al 2002, Holmes et al 2021). River dis-
charge under future climate conditions is projected to
increase by more than 50% compared to the present,
mainly in Alaska and Siberia regions (Bring et al
2017).

Many studies highlight the importance of Arc-
tic Ocean freshwater content not only in the Arc-
tic hydrological cycle but also in the biogeochemical
and physical processes (Haine et al 2015, Carmack
et al 2016, Fu et al 2020, Pnyushkov et al 2022). Des-
pite these efforts, the Arctic hydrologic cycle pro-
cess in the CMIP6 was hardly improved over CMIP5

(Khosravi et al 2022, Wang et al 2022). In particu-
lar, CMIPmodels tend to overestimate the sea surface
salinity near the estuary, which can be influenced by
the representation of river discharge (Shu et al 2018,
Zanowski et al 2021).

Several recent observational studies have reported
that Arctic river discharge modulates Arctic biogeo-
chemistry by delivering dissolved organic matter and
enhancing phytoplankton response (Holmes et al
2012, Fichot et al 2013, Tremblay et al 2014, Ardyna
et al 2017, Terhaar et al 2021). However, it is difficult
to analyze the impact of additional river discharge on
the marine ecosystems of the Arctic Ocean in obser-
vational studies, and so far, studies using ESMs to
clarify this are insufficient. In addition, it is challen-
ging to predict futureArctic ecosystems because of the
uncertainty of the primary productivity simulated by
models (Vancoppenolle et al 2013, Ardyna andArrigo
2020).

In this study, we investigate the effect of additional
river discharge on phytoplankton biomass using the
ESM via the present-day and future climate sim-
ulation. Our model simulations suggest that Arc-
tic river discharge can control sea ice and nutri-
ent distribution, affecting phytoplankton growth. In
addition, we analyzed the impact of increased river
discharge under the influence of future climate con-
ditions on future Arctic ecosystems, thus, highlight-
ing the importance of river discharge on ecosystem
changes in the future.

2. Materials andmethods

In this study, we applied the Geophysical Fluid
Dynamics Laboratory ESM CM2.1 coupled with the
biogeochemical model Tracers of Ocean Phytoplank-
ton with Allometric Zooplankton code version 2.0
(TOPAZv2, Griffies et al 2005, Dunne et al 2012,
2013). TOPAZv2 considers the cycle of carbon and
nutrients such as nitrogen, phosphorus, silicon, and
iron (Dunne et al 2013). The phytoplankton growth
rate is calculated as a function of various chloro-
phyll to carbon ratios and is limited by nutrients and
light (Dunne et al 2010). TOPAZv2 includes external
inputs from atmospheric nitrogen deposition, litho-
genic dust, soluble iron, and river nitrogen. For more
detailed information, see Dunne et al (2013) and
supplementary.

We performed four experiments to analyze the
changes in phytoplankton due to the additional river
discharge in the present-day and future climate.
The freshwater addition experiments were abbre-
viated as ‘FWadd,’ and the standard experiments were
abbreviated as ‘CTRL.’ In addition, to distinguish
between the present-day and future climate simula-
tions, we used parentheses after each experimental
abbreviation with uppercase P and F, respectively
[e.g. CTRL(P) for present-day control experiment,
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Figure 1. (a) River mouth of CTRL(P), (b) comparison of annual mean river discharge of CTRL(P), FWadd(P), and observation
(Obs). In (a) the black dots are the simulated five largest river mouths of the models and the red dots are the site of observation
(ArcticGRO). The dash lines are Eurasian Basin (ESB) and Canada Basin (CB), which are the major response areas for
phytoplankton by additional river discharge. In (b) the model result is the sum of 9 model grids surrounding the black
dots in (a).

FWadd(F) for the future freshwater addition
experiment].

The present-day climate simulation was per-
formed similarly to the 1990 level experiment, which
is often used as the present-day experiment in previ-
ous studies using the CM2.1 model (Gnanadesikan
et al 2006, Delworth et al 2012, Lim et al 2019a,
2019b). The present-day climate simulation is per-
formed by prescribing greenhouse gases, including
carbon dioxide, methane, nitrous oxide, among oth-
ers, as well as organic nitrogen oxides and inorganic
nitrogen oxides prescribed for rivers and the atmo-
sphere at 1990 levels (Green et al 2004, Hegglin et al
2016). The future climate simulation set twice as
much carbon dioxide as the present-day condition,
similar to the CO2 concentration level in 2100 for the
middle of the road scenario in shared socioeconomic
pathways (SSP2-4.5).

In FWadd experiment, we additionally supplied
0.03 Sv of total freshwater to the Arctic Ocean. The
additional freshwater amount of 0.03 Sv is a value
derived from the model uncertainties of CMIP5 and
CMIP6 (Shu et al 2018, Wang et al 2022). As fresh-
water was forced into the FWadd experiment, surface
salinity decreased and sea level rose, leading to a con-
tinuous increase in sea level as the experiment pro-
gressed (figure S1). Although the FWadd experiment
was conducted for 100 years, the first 40 years were
considered a spin-up period, and 71–100 years were
excluded from the analysis due to sea level rise. Con-
sequently, the study analyzed only the results from 41
to 70 years.

We used the observational river discharge data
provided by Arctic Great River Observatory (Arctic-
GRO) to compare the estimations from the model
output (Shiklomanov et al 2021). In this study, we
compared data from the five major rivers, Ob′, Yen-
isey, Lena, Kolyma, and Mackenzie, that flow into

the Arctic Ocean with model outputs. The river
observation data analysis period averaged from 1981
to 2010 according to the present-day level. The posi-
tion of the simulated river mouth was similar to the
observation point (figure 1(a)). The simulated river
discharge in the model was within a relatively accept-
able range except for Kolyma (figure 1(b)).

3. Results

3.1. Impact of river discharge in present-day
climate simulation
In the present-day climate simulation, the dominant
response to the additional river discharge in spring
(April-May) is a decrease in phytoplankton, except
for the Laptev and East-Siberian coastal region, where
a large amount of freshwater input and nutrients
are supplied (figure 2(a)). Within the time span of
the spring season, the afore-mentioned phytoplank-
ton response is amplified throughout the season and,
therefore, the feature is more salient in May (figure
S2). Note that most negative chlorophyll concentra-
tion (CHL) anomaly patterns in spring appeared over
the marginal ice zone (MIZ) (figure 3(a)).

There are a couple of mechanisms for the sea ice
increase over the MIZ by additional river discharge.
Firstly, the additional freshwater content through-
out the Arctic Ocean increases sea ice by lower-
ing surface salinity (Hellmer 2004, Bintanja et al
2013) which has a higher freezing point, allowing
for better sea ice formation. Secondly, the Arctic
basin’s increased sea surface height (SSH) due to
the supplied water mass may help the ice forma-
tion (figure S3). Additional river discharge weakens
the SSH gradient, preventing hot and salty sea-
water inflow outside the Arctic Ocean. These res-
ults are consistent with other model experiments
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Figure 2. Chlorophyll concentration in the present-day
climate simulation for (a) spring (April–May) and
(b) summer (June–July) on the upper ocean (0–20 m). The
shaded area indicates the difference between FWadd(P) and
CTRL(P) of chlorophyll concentration. Black dots represent
significant values of chlorophyll concentration at the 95%
confidence level; (c) Vertical structure of monthly
climatologies in the present-day (CTRL(P); contour) and
the difference between FWadd(P) and CTRL(P) (shading)
of the simulated chlorophyll in the Arctic Ocean (area
averaged in latitude: 65◦ N–90◦ N, longitude: 180◦

E–180◦ W).

that examined additional river discharge in the Arc-
tic Ocean (Nummelin et al 2016). The increased
sea ice caused by the additional river discharge
blocked more sunlight, limiting phytoplankton’s
growth.

During the summer, additional river discharge
played the opposite role, increasing the phytoplank-
ton, especially over Eurasian Basin (figure 2(b)). We
refer to the Eurasian Basin, where the spring and
summer anomaly pattern changes are most signific-
ant, as a ‘hotspot’ for phytoplankton in the domin-
ant response region to river forcing. Compared to
June, the CHL anomaly pattern in July was weaker
and moved towards the center of the Arctic Ocean
as the sea ice moved toward the center of the Arctic
Ocean (figure S2).

In general, the explosive growth of phytoplank-
ton which is so called as a ‘chlorophyll bloom,’ is
observed in spring where sea ice melts significantly.

Figure 3. Difference of sea ice concentration (SIC) (shaded)
and the averaged sea ice extent (SIC> 15%) on CTRL(P)
(contour) between FWadd(P) and CTRL(P) of (a) spring
and (b) summer. And, the difference of nitrate(NO3)
(shaded) between FWadd(P) and CTRL(P) and the
averaged NO3 on CTRL(P) (contour) of spring (c) and
(d) summer.

The increased chlorophyll consumes nitrate, which is
a major nutrient in the Arctic Ocean, and leads to
the nitrate depletion in the following summer (Lim
et al 2019b). However, FWadd experiment exhibited
poor spring phytoplankton growth and this, in turn,
increased available nitrate in the phytoplankton hot-
spot in summer significantly (figure 3(d)). Therefore,
increased sea ice concentration due to the additional
fresh water delayed the chlorophyll bloom timing
(figure 2(c)). The upper ocean chlorophyll bloom in
summer by following better conditions of having both
solar input from surface and nitrate consumption in
FWadd above 20 m. At the subsurface, it is stratified
by additional discharge, and sunlight is absorbed by
the upper chlrophyll bloom (figure S4). So, subsur-
face CHL below 30 m depth has been decreased.

Another reason for summer nitrate increases
could be increased sea ice (figure 3(b)). Sufficient
summer light and shallow sea ice do not limit the light
required for phytoplankton growth. Although the
mixed layer becomes shallow due to the stratification
effect of river water inflow, the effect is insignificant in
summer (figure 4; no figure in autumn and winter).
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Figure 4. Difference between FWadd(P) and CTRL(P) for
(a) spring and (b) summer freshwater content (FWC)
(shaded) and averaged FWC on CTRL(P) (contour),
(c) spring and (d) summer mixed layer depth (MLD). The
FWC was calculated using the following integral with a
reference salinity (Sref) of 34.8 psu. S(z) is the salinity of z.

FWC=
´ 0
z

Sref−S(z)
Sref

dz.

This is because the freshwater inflow from sea ice
melting in summer ismuch larger than from river dis-
charge (Peralta-Ferriz and Woodgate 2015, Hordoir
et al 2022). Because of the mixed layer characteristics
in summer, the decrease in sea ice melting water can
causes vertical mixing with the deep ocean, increases
nutrients, andmay affect phytoplankton growth. As a
result, the phytoplankton hotspot is formed due to a
significant increase in nutrients due to surplus nutri-
ents in spring and reduced sea ice melting effect in
summer.

3.2. Impact of river discharge in future
In the previous subsection, we analyzed the effects
of additional river discharge on phytoplankton in
the present-day climate. This subsection analyzes the
impact of additional river discharge on phytoplank-
ton under the future climate simulation. In the future
climate simulation, the dominant response of phyto-
plankton to additional river discharge was a decrease
in spring and an increase in summer, similar to the
present-day climate simulation. However, in con-
trast to the increase in phytoplankton mainly in the

Figure 5. Differences between the FWadd(F) and CTRL(F)
of the simulated (a) spring chlorophyll, (b) summer
chlorophyll, (c) spring sea ice concentration, and
(d) summer nitrate. In (a) and (b), black dots represent
significant values of chlorophyll concentration at the 95%
confidence level. The climatologies in the CTRL(F) of
(c) sea ice extent (SIC> 15%) and (d) nitrate (Contour).

Eurasian Basin in the present-day climate, in the
future climate, phytoplankton was extended to the
Canada Basin.

The future Arctic Ocean is expected to become
more stratified than present-day climate conditions
by melting ice and strengthening the hydrological
cycle (Haine et al 2015). Most models project that,
in the future, surface nitrate will decrease due to
the stratification of the Arctic Ocean (Vancoppenolle
et al 2013). The CTRL(F) results are consistent with
the previous studies mentioned above: a significant
decrease in surface nitrate and phytoplankton was
simulated compared with the CTRL(P).

In the future climate simulation, the increase in
river discharge resulted in a decrease in spring phyto-
plankton (figure 5(a)). As in the present-day sim-
ulation results, the phytoplankton is decreased by
increased sea ice in the future simulations. How-
ever, compared with the results of the present-day
climate simulations, negative CHL anomaly patterns
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appeared in the Kara and Chukchi Seas, which are
generally close to the interior of the Arctic Ocean.
Because the sea ice extent was significantly reduced in
the future compared to the present-day climate simu-
lation, resulting in broader negative anomaly patterns
of phytoplankton. The mechanism of sea ice forma-
tion by freshwater was the same as that in the present-
day climate simulation.

As in the simulation of the present-day climate,
an increase in river discharge led to an increase in
summer phytoplankton. A wider reaction was shown
in the Canada Basin than in the Eurasian Basin
(figure 5(b)). The positive anomaly in the Eurasian
Basin, Canada Basin, and East-Siberian-Chukchi Sea
is the primary CHL anomaly pattern in June (figure
S6). However, the positive anomaly in the Eurasian
Basin was narrow, and the anomaly in the Canada
Basin was wide (figure S6). In July, the anomaly
intensity weakened, and the pattern shifted toward
the center of the Arctic Ocean, compared to June.

Unlike the present-day climate simulation, sum-
mer nutrient changes due to additional river dis-
charge were only related to a spring phytoplank-
ton bloom. The nitrate positive anomaly pattern in
summer was similar to the CHL negative anom-
aly pattern in spring, showing the same mechanism
as the present-day climate simulation (figure 5(d)).
The consistency of this anomaly pattern implies that
freshwater-induced spring sea ice increases contribute
to summer phytoplankton growth, even in the future
climate simulation. However, the increased positive
CHL anomaly caused by summer ice is weakened in
future simulations (figure S7). It is because the future
mixed layer is shallow, the melting of much sea ice
in May. Therefore, the mechanism of increased ice-
induced vertical mixing will occur in May instead of
in June. However, the impact of nutrients is small
as May is still the period when light limitations
dominate.

The summer hotspots shift the seasonal evolution
of the MIZ from May to June is remarkably different
in the present-day and future. In the present-day cli-
mate, the difference in sea ice concentration between
May and June is significant in the Eurasian basin with
the Barents-Kara Sea. In contrast, more extensive sea
ice fluctuations appear in the future climate in the
Beaufort and East Siberian-Chukchi sea. These results
suggest that future sea ice distribution changes may
shift summer phytoplankton hotspots.

4. Summary and discussion

We studied how the increase in Arctic river discharge,
which was the large model uncertainty in most
CMIP6 models, affects spring and summer phyto-
plankton in the present-day and future climates. In
the present-day climate simulation, additional river
discharge in spring decreased phytoplankton near
the Eurasian Basin due to the block of light by the

increased sea ice. In summer, additional river dis-
charge increased phytoplankton, mainly in the Euras-
ian Basin, by the nutrients not consumed in the spring
and the increased mixed layer depth due to reduced
sea ice melting water. In the future climate simula-
tion, similar to the present-day climate simulation,
phytoplankton decreases in spring and increases in
summer. However, major phytoplankton variability
occurs in the Canada Basin, not in the Eurasian Basin.
We suggest that the shift of the significant response
region of phytoplankton in future climates is due to
the shift of the MIZ in the future.

It should be noted, when interpreting our res-
ults, that the model used in this study, GFDL-CM2.1-
TOPAZ, overestimates the river volume of 0.1 Sv
(CTRL(P), 0.14 Sv). It is also useful to consider
that the additional river forcing of 0.03 Sv is weaker
than the additional forcing due to global warming
(figure S8).

In the comparison with the observed data
(figure 1(b)), careful interpretation is needed. Note
that the observed data in figure 1(b) are from the
upper layer of the river observed at specific river
mouth. However, model data comes from gridded
averaged values.

Previous studies have revealed that future phyto-
plankton could enhance the AA (Park et al 2015).
It has been suggested that phytoplankton blooming
in early spring could enhance AA by melting sea
ice, transferring more ocean heat to the atmosphere,
and reducing Arctic Ocean albedo (Lim et al 2019a,
2019b). However, as shown in our study, an increase
in river discharge may weaken the effect of biogeo-
physical feedback owing to a decrease in phytoplank-
ton. Therefore, when quantitatively analyzing the
effects of biogeophysical processes on Arctic warm-
ing, we suggest that both precise forcings of the fresh-
water input and more realistic sea ice response ice are
needed. In this regard, it should bementioned that the
model used in this study is known to underestimate
summer sea ice (Griffies et al 2011). Therefore, care-
ful interpretation is needed because our results indic-
ate that phytoplankton response to the river discharge
sensitively depends on the distribution of sea ice con-
centration both in the present and future.

Note that we still do not have a state-of-art
ESM that realistically captures the complex bio-
geophysical feedback between the Arctic environ-
ment and ecosystem (Vancoppenolle et al 2013,
Tagliabue et al 2021). Although it may vary for spe-
cific regions and variables, the multi-model ensemble
mean of typical historical run is reported to be bet-
ter for CMIP6 than CMIP5 (Davy and Outten 2020,
Thorarinsdottir et al 2020). However, it exhibits even
greater uncertainty in many variables, especially in
the biogeochemistry category, such as phytoplankton
biomass (Tagliabue et al 2021). The physical under-
standing gained in this study, therefore, can be use-
ful for developing a better simulation of complex
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interactions among physical, hydrological, and biolo-
gical processes in the Arctic.

Due to the expected permafrost thawing in the
future, additional nutrients input by river discharge
has to consider in the future simulation of Arc-
tic environmental and ecosystem change (Fichot
et al 2013, Turetsky et al 2019, Terhaar et al 2021).
Although the Arctic Ocean is expected to become
more stratified, an increase in river discharge and riv-
erine nutrientsmay increase the phytoplankton in the
shelf break (Ardyna et al 2017). The mechanisms of
nutrients for the additional river discharge become
more and more complex. Therefore, future model-
ing studies should consider the positive and negative
effects of river discharge and riverine nutrients using
more sophisticated biogeochemical models and eval-
uate their impact.

In this study, we do not consider the temperat-
ure of rivers due to global warming. In recent years,
the temperature of rivers has been increasing glob-
ally (Liu et al 2020). Park et al (2020) suggested that
increasing river water temperature could cause posit-
ive feedback in the Arctic climate. In future research,
we plan to quantify the sensitivity to the riverine heat.

We looked at the sensitivity of freshwater inflows
only by river water. However, Brown et al (2019)
pointed out that an increase in precipitation may be
more effective in Arctic Ocean desalination than an
increase in river discharge. In addition, desalination
due to Greenland glacial dynamics, which is not con-
sidered in this study, may also affect phytoplankton
(Arrigo et al 2017, Kwiatkowski et al 2019). It will be
more valuable if additional research is conducted by
combining several desalination processes in the Arctic
Ocean, which was not considered in our experiment.
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